32 Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.
http://www.pnas.org/content/108/50/19949.abstract
31 Biological treatment of eucalypt spent sulphite liquors: A way to boost the production of second generation bioethanol.
http://www.sciencedirect.com/science/article/pii/S0960852411013836
30 Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.
http://www.nature.com/nbt/journal/v29/n10/abs/nbt.1976.html
29 Study of biodiesel production from animal fats with high free fatty acid content.
http://www.sciencedirect.com/science/article/pii/S0960852411013563
28 Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass.
http://www.pnas.org/content/108/42/17550.abstract
27 A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries.
http://www.sciencemag.org/content/334/6052/75.abstract
26 Advanced biofuels with comparable properties to petroleum-based fuels could be microbially produced from lignocellulosic biomass. In this study, Escherichia coli is engineered to produce bisabolene, the immediate precursor of bisabolane, a biosynthetic alternative to D2 diesel.
http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1494.html
25 Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Boddien A. et al. (2011). Science 333:1733-1736.
http://www.sciencemag.org/content/333/6050/1733.abstract
24 Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
http://www.sciencedirect.com/science/article/pii/S0960852411010066
23 High-speed atomic force microscopy tracks single-molecule dynamics of cellulose degradation into fermentable sugar molecules. Igarashi K. et al. (2011). Science 333: 1279-1282.
http://www.sciencemag.org/content/333/6047/1279.abstract
|